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Recently Cahn's generalized diffusion equation theory of  spinodal decom- 
position in binary alloys has been modified to include the effects of  thermal 
fluctuations. This paper reports studies of a one-dimensional binary alloy 
system in which fluctuations can be observed on an atomic time scale. The 
system, a computer-simulated linear chain binary alloy which evolves from 
an initially random atomic arrangement through interchange of  unlike 
nearest neighbors via the Monte Carlo technique, rapidly develops grains of 
two different concentrations and then slowly experiences coarsening. A 
numerical solution of the diffusion equation successfully predicts the 
development of  grain structure, but only predicts coarsening to the extent 
present .as fluctuations in the initial atomic arrangement. The simulated 
alloy coarsens further than the prediction of  the diffusion equation because 
of thermal fluctuations which develop naturally during its evolution. This 
suggests that thermal fluctuations may play an important role in coarsening 
in real alloys. 
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1. I N T R O D U C T I O N :  T H E O R I E S  OF S P I N O D A L  
D E C O M P O S I T I O N  

The theoretical treatment of spinodal decomposition in binary alloys has 
been developing over the past two decades. Cahn, ~1-4~ Cahn and Hilliard, ~5) 
Hillert, ~6'7~ and DeFontaind 8~ developed and studied a generalized diffusion 
equation which predicts changes in local concentration as a function of time. 
Their work provided insight into the processes of formation of grains of 
A-rich and B-rich material in an AB alloy (spinodal decomposition) and the 
subsequent growth and coalescence of these grains (coarsening). 

Recently Cook ~~ and Langer ~1~ noted that the generalized diffusion 
equation does not account for thermal fluctuations. This paper reports 
results ( ~  which indicate that neglect of thermal fluctuations in the diffusion 
equation leads to its failure to completely describe coarsening in a one- 
dimensional alloy. 

Langer's theory and some of its consequences are presented in some 
recent papers. ~~ References 10 and 13 are particularly important here, 
for in them Langer points out connections between his theory and the 
generalized diffusion equation, the linearized diffusion equation, and Cook's 
modification of the linearized diffusion equation accounting for thermal 
fluctuations, (9~ which emerges as a special case. We briefly summarize the 
generalized diffusion equation and Langer's ideas here so that our work can 
be set in the proper perspective. 

We can write the generalized diffusion equation as 

~ / ~ t  = M V 2 3F/3~(r) (1) 

where ~7(r, t) is the concentration as a function of position and time, M is the 
mobility, F is the free energy functional of 7, and ~F/3~(r) is the functional 
derivative of F. Neglecting elastic strain energy due to substitution of A for 
B or vice versa, we write 

r = f dr [�89 2 + f(r/)] (2) 

The first term in square brackets is the "gradient energy.?' which reflects the 
attraction of like molecules for each other. Co is an energy density and ~:o is a 
length over which changes in ~ are measured, f(,?) is a free energy density 
which must be at least quartic in ~/below the critical temperature, as shown 
in Fig. 1. The two minima off(~7) occur at the concentrations of A-rich and 
B-rich grains, ~Ta and ~ .  

Substitution of (2) into (1) yields 

~7/~t = M V2[-eo~o 2 V2~ + (Of/g,?)] (3) 

which is the usual form of the diffusion equation, except for differences in 
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Fig. 1. The free energy density function f(r/) below 
the critical temperature. Stable, metastable, and un- 
stable regions of concentration are indicated. 

/LE  UNST'Ei STAL 
CONCENTRATION 

notation. Equation (3) is usually linearized by expanding f about '70, the 
average concentration, to second order in r/ - T0- By inserting a spatially 
periodic perturbation of ~7 which grows or decays exponentially in time, one 
finds that wherever d2f/d~72 < 0 there are some fluctuations which grow, i.e., 
we can identify the unstable (spinodal) and metastable regions of concentra- 
tion as shown in Fig. 1. 

The price of linearity is the prediction of continued exponential growth, 
which clearly must not happen as the fluctuation amplitude becomes so large 
that local concentrations approach ~TA and ~/B. DeFontaine's work ~a~ includes 
a computer evolution of the nonlinear diffusion equation, and provides 
insight into how small fluctuations grow into grains of fully phase-separated 
material in a one-dimensional alloy. 

Thermal fluctuations are extremely important in the coarsening process. 
In the coarsening process some well-established grains dissolve away and 
diffuse across well-established grains of the other phase. Other grains change 
shape significantly (except in one-dimensional systems). In an alloy with 
many grains of similar shape and size, thermal fluctuations will significantly 
influence which ones dissolve, which ones grow, and how their shapes change. 
Recognizing this, Langer deals extensively with the coarsening process in 
Ref. 10. (Fluctuations also play an important role in early stages of spinodal 
decomposition.(9'13~) 

Langer points out that there are an infinity of spatially periodic stationary 
solutions {~Ts} of (3). These correspond to saddle points of the energy function 
in the very-many-dimensional space of local concentrations. The longer the 
wavelength of'qs, the lower its energy. The coarsening process is the transition 
of the alloy from a concentration near one of the {r/s} to a concentration near 



184 Alfred B. Bortz 

another of the {%} with a longer wavelength. In order to make this transition, 
the system must find one of the exceedingly rare directions in this very-many- 
dimensional concentration space that leads down from one saddle point 
to another of lower energy. This direction corresponds to the occurrence 
of one of the exceedingly rare fluctuations that initiate the coarsening 
event, 

Mathematically, Langer writes a "master  equat ion" describing the time 
rate of change of probabilities of various concentration functions ~7(r). From 
the master equation one can deduce (3) if the probability is a sharply peaked 
function of concentration, which is not true in the vicinity of a saddle point 
of the energy function. To solve the coarsening problem, Langer expandsf(~/) 
about members of {~7~), not just ~7 = 70. 

To emphasize the difference between the diffusion equation and master 
equation solutions, we consider an example which we expect to be a common 
situation in real alloys. The grains of phase-separated material, fully de- 
veloped, give the alloy a nearly periodic structure. We are no doubt in the 
vicinity of a saddle point in the energy. The diffusion equation constrains the 
alloy to evolve in a single direction of concentration space [~(r, t + dt) is 
uniquely determined by ~7(r, t) and Eq. (3)]. Since almost none of the many 
directions lead down to a saddle point o f  lower energy, the alloy wanders 
indefinitely around the saddle point. The master equation samples all 
directions of concentration space [~7(r, t + dt) has certain probabilities of 
assuming various forms, given ~7(r, t) and the master equation]. Although 
only a few directions lead down to a saddle point of lower energy, the master 
equation must find them. Eventually, coarsening proceeds. In the remainder 
of this paper, we describe the results of some Monte Carlo simulations of a 
one-dimensional binary alloy which illustrate that coarsening, initiated by 
thermal fluctuations and not predicted by (3), does occur. 

2. T H E  ALLOY M O D E L  

Our model alloy is a one-dimensional array in a computer memory. 
Each element of the array represents one site on a one-dimensional lattice of 
length N (N = 200 here) with periodic boundary conditions. Each element 
is assigned value + 1 or - 1 corresponding to A and B atoms. The lattice 
can be initialized by reading in as data the value of each element, or by having 
a random number generator, discussed previously, ~14~ assign - 1 to random 
locations of an all +1 lattice until a desired average concentration ~7o is 
achieved. [The concentration variable 7, which ranges from - 1  to + 1, is 
simply related to the composition or mole fraction of A, xA, by xA = �89 + 1). 
In this paper we are dealing with systems having ~7o = 0.] The configuration 
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energy of the alloy is computed by 

E = - J  ~ kikj (4) 
O<li-Jl<~n 

where k~ is the value stored in site i of the array, the constant J, assumed 
positive, is the interaction energy, and n is the range of interaction. In reality, 
J should be a monotone decreasing function of l i - J l. But using such an 
interaction would lengthen computer time considerably without adding 
significant physical insight. 

An interaction energy of form (4) produces a tendency for clustering of 
like atoms and is analogous to the Ising <1~) ferromagnetic interaction. How- 
ever, in one dimension the Ising model has no phase transition above absolute 
zero, and thus we need a model more like the molecular field model, <~6> which 
does have a phase transition. Thus we have chosen to use a long-range (n = 15 
here) interaction. Using large n also enables us to make reasonable evalua- 
tions of local concentrations and to make meaningful comparisons of results 
from an alloy evolving via our model and one evolving via the diffusion 
equation. These comparisons are detailed in the next section. 

Once its initial configuration is assigned, the alloy evolves through the 
following stochastic process. A random pair of nearest-neighbor sites is 
selected. If  the two atoms are different, their possible interchange is con- 
sidered as follows. We define AE = E '  - E, where E is the energy of the 
current configuration and E '  is the energy after interchange. The ratio of the 
thermal probabilities of the two configurations is 

p = e x p ( -  AE/kT) (5) 

where kTis Boltzmann's constant times the absolute temperature. The proba- 
bility of interchange is 

P = p/(l  + p) (6) 

We compare P to a random fraction R. I f P  /> R, we perform the interchange. 
By repeatedly choosing pairs of neighbors and considering their possible 
interchange, the computer program simulates the diffusion process in the 
alloy2 

3. C O M P A R I N G  T H E  M O D E L  TO T H E  D I F F U S I O N  E Q U A T I O N  

In order to compare the results of a system evolving via the stochastic 
model to the computer evolution of a similar system governed by the general- 
ized diffusion equation (3), we calculated ~11~ the equivalents to %, ~0, and 

3 See, e.g., Refs. 17 for a general review of Monte Carlo simulations. 



186 Alfred B. Bortz 

f(~). Letting J(r) be the interaction energy as a function of separation, we find 

eo = J  o/2 (7) 

~o ~ = ~ (8) 

and 

f(v)  = lkTln[�88 - 72)1 + lkTv ln[(1 + 7/)/(1 - ~7)1 - �89 (9) 

where Jo and f2 are defined by 

Jo = f J(r) dr 

,/2 = Jo~ 2 = D-1 f j ( r ) r  2 dr 

(10) 

(11) 

where D is the dimensionality of the lattice. From (9) we can find ~A and ~TB 
by solving 

2Jo~q/kT = ln[(1 + ~)/(1 - ~7)] (12) 

for r~. The positive root of(12) is r/A = --~TB. Equation (12) has nonzero roots 
only if Jo > kT. Thus we can identify the critical temperature, above which 
no phase separation is expected, as 

Tc = Jo/k (13) 

The local concentration at site i is defined as the average value of the 
elements of the array from i - n to i + n, i.e., site i and all those with which 
it interacts. To enable local concentration to take on essentially a continuum 
of values (rather than 31 values, if n = 15) between - 1 and + 1, we time- 
averaged the concentration over many interchanges while making sure that 
the averaging time was short compared to the length of time required for 
notable changes in the system. 

We compare four sites on the stochastic model chain to one site in the 
diffusion equation chain. By doing so, we cut computer time for the diffusion 
equation program by a factor of four. Actually the economy in time was even 
greater, for if all 200 local concentrations of the stochastic chain had been 
used as a starting point for the diffusion equation, much computer time 
would have been spent smoothing out "wiggles." 

To evolve the diffusion equation in time, we substituted (9) into (3) to 
get a differential equation. We discretized the space variable to get a set of 50 
coupled differential (in time)-difference (in space) equations, one equation 
for each space point. We then assumed that the equations were linear in time, 
and calculated the increments in the 50 local concentrations. Interacting with 
a time-sharing computer enabled us to control the time increment so that 
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it was small enough that the linear approximation was valid, but large 
enough to make efficient use of computer time. 

4. RESULTS A N D  C O N C L U S I O N S  

Figures 2-7 show the initial, an intermediate, and the final stage of two 
different evolutions of an alloy with 770 = 0 at two different temperatures 
(Jo/kT = 2 for Figs. 2-4, Jo/kT = 1.625 for Figs. 5-7). Part (a) of each figure 
graph of concentration as a function of position of the stochastically simu- 
lated alloy. Part (b) is the same graph for the corresponding initial state 
having evolved via the diffusion equation for a corresponding time period. 
(The time units for the diffusion equation are arbitrary. We use an empirical 
factor, determined from observation of comparable evolutions, to convert 
from arbitrary units to attempted interchanges.) The dashed lines on the 
graphs indicate the concentrations of the two stable phases. 

The contrast in behavior of the two sets of figures illustrates both the 
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Fig. 2. (a) The initial state (concentration vs. position) 
of  the stochastically simulated alloy. (b) The corre- 
sponding initial state for an alloy to be evolved via the 
diffusion equation. 
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Fig. 3. An intermediate stage in the evolution of the 
alloys of Fig. 2. 

success and the limitations of the generalized diffusion equation. Considering 
Figs. 2-4, we note that the diffusion equation evolution appears to match 
the evolution of the stochastically simulated alloy very well. It matches not 
only the development of  well-defined regions of different compositions, but 
also the sizes of the regions and the coarsening from four grains to two. In 
fact, the full set of graphs from which Figs. 2-4 are selected seems to be a 
persuasive demonstration that the diffusion equation is valuable in predicting 
not just the early stages of evolution of the alloy, but even the later stages of 
coarsening. It must be noted, however, that Fig. 3 has one grain less than 
fully developed, so that coarsening is in some sense built into the evolution. 

Figures 5-7 illustrate that Langer's ideas about the limitations of 
the generalized diffusion equation are valid. Between Figs. 5 and 6, both 
the stochastically simulated alloy and the corresponding alloy evolved via the 
diffusion equation develop a four-grain configuration. This time, however, the 
four grains are essentially fully developed and nearly identical in shape. 
Thus without thermal fluctuations there is essentiall~r no way to initiate the 
dissolution of one grain in order to begin the coarsening process. Figure 7 
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illustrates that through thermal fluctuations, coarsening which is not predicted 
by the diffusion equation can take place. 

Looking more closely at the pairs of figures 2(b) and 4(b), 5(b) and 7(b), 
we see that the coarseness of the final configuration predicted by the diffusion 
equation is built into the initial configuration. The same observation can be 
made about the alloys evolved in DeFontaine's thesis, ca) Looking now at 
Figs. 5(a) and 7(a), we see that coarsening, not built in initially, can occur 
when thermal fluctuations are permitted. 

Although our alloy model is one dimensional, and coarsening is much 
more complicated in real alloys, our results suggest that thermal fluctuations 
play an important role in coarsening in real alloys, especially in light of 
Cook's (9) and Langer's ~13) analysis of experimental results. (tang) Their 
analysis demonstrates the importance of fluctuations in early-stage spinodal 
decomposition in real alloys. Our "experimental" results demonstrate the 
importance of fluctuations in coarsening in a one-dimensional model alloy. 

We conclude that the generalized diffusion equation is valuable for 
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Fig. 5. Another pair of corresponding initial states 
which will evolve via (a) the stochastic computer 
simulation and (b) the diffusion equation. 

qualitatively describing the initial phase separation in binary alloys. However, 
refinements introducing thermal fluctuations are necessary to properly 
describe the coarsening process. This seems to be in conflict with the results 
of Swanger e t  al. ~2~ who observed coarsening in a linear chain binary alloy 
with periodic boundary conditions evolving via the generalized diffusion 
equation. But their alloy strongly resembles our Figs. 2(b)-4(b). We suspect 
that had their alloy reached a stage similar to our Fig. 6(b), they would have 
seen no further coarsening. 

5. S U M M A R Y  

Through comparison of the evolution of a stochastically simulated, 
linear chain binary alloy to the evolution predicted by a numerical solution 
of the generalized diffusion equation theory of Cahn and collaborators, ~1-8) 
the strengths and limitations of that theory became evident. The diffusion 
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equation theory provides a good qualitative description of the early stages of 
spinodal decomposition, but only succeeds in describing coarsening to the 
extent that coarsening is built into the initial configuration of the alloy. A 
more accurate description of coarsening requires a refinement, such as 
Langer's, (1~ which accounts for thermal fluctuations. 
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